SYNTHESIS OF BENZO[a]FURO[2,3-g]QUINOLINZINES FROM

G. V. Pshenichnyi, A. I. Chakhovskii,

2-METHYL-2-CINNAMOYLOXIRANE

L. A. Melentovich, A. S. Zakharevskii,

V. A. Mashenkov, and L. S. Stanishevskii

UDC 547.833.9'823'728.2.07: 615.214

Stereoisomeric 1e-allyl-3-hydroxy-3-methyl-6e-phenyl-4-piperidones were obtained by reaction of 2-methyl-2-cinnamoyloxirane with allylamine. Their PO-olefinization and subsequent heating in 96% $\rm H_2SO_4$ leads to 3a,4,6,7,11b,12-hexahydro-3a,7-dimethyl-2-oxobenzo[a]furo[2,3-g]quinolizines.

Interest in the chemistry of benzo[a]furoquinolizines is due to the similarity of their structure to that of natural and related active compounds [1-3]. The only method until recently for constructing the benzo[a]furo[2,3-g]quinolizine skeleton is by reductive photocyclization of enamides of the isoquinoline series [3].

We have proposed a new path of synthesis of compounds of this type [4], based on the readily available cinnamoyloxirane I. Thus, in the reaction of compound I with allylamine, stereoisomeric piperidones II, III were obtained, which were converted according to the Witting-Horner reaction into lactones IV, V. On heating in $96\%~\mathrm{H_2SO_4}$ the latter cyclized into quinolizidines VI, VII.

II 3e-OH, 3a-Me. 6e-Ph; III 3a-OH, 3e-Me, 6e-Ph; IV 5e-Ph; V 5a-Ph; VI $11b(\alpha)$ -H, $3a(\beta)$ and $7(\alpha)$ -Me; VII $11b(\beta)$ -H, $3a(\beta)$ and $7(\beta)$ -Me

The structure of all the synthesized compounds was confirmed by the data of elemental analysis, IR, PMR, NMR and mass spectra (Tables 1 and 2). The structure of le-ally1-3-hydroxy-4-piperidones II, III conforms well with the literature data [5, 6]. The frequency values of the absorption maxima in the IR spectra, corresponding to the C=C and C=O bonds of lactones IV-VII, are characteristic of unsaturated \u03c4-lactones. The chair-conformation of the six-membered rings in compounds II-VII and the relative orientation of their substituents follow from the spin-spin coupling constants in the PMR spectra (Table 1) [8]. The types of coupling of rings B and C in quinolizidines VI, VII is also confirmed by the presence or absence of Bohlmann bands in the IR spectra in the 2700...2850 cm⁻¹ region [9]. The proposed conformation of compound VI with an α -orientation of the 11b-H atom conforms with the presence of these absorption bands, and also with the value of the chemical shift of the proton under consideration in the PMR spectrum [10]. In the IR spectrum of quinolidizine VII, the Bohlmann bands are absent, and in the case of a chair-conformation of the piperidine ring, the cis-B/C coupling appears to be the only one possible. The shift to the strong field of most of the carbon atoms signals of the quinolizidine fragment in the ^{13}C NMR spectra (Table 2) during the cis/B/C coupling, which is noted for benzo[a]quinolizidines VI, VII, is significant [11].

To investigate the pharmacological activity, we studied the acute toxicity, the neurotropic and analgesic properties of methanesulfonate VI and hydrochloride VII in tests on white mice.

V. I. Lenin Belorussian State University, Minsk 220080. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1269-1272, September, 1989. Original article submitted January 15, 1988.

TABLE 1. Characteristics of Compounds II-VII

Empirical mp, °C IR spectrum, cm ⁻¹ PMR	IR spectrum, cm ⁻¹	trum, cm ⁻¹	PMF	PMR spectrum, 6, ppm (SSCC, Hz)	ž	Yield,
II C ₁₅ H ₁₉ NO ₂ 4546 1645, 1720, 3505 1,63 (s. 3-CH ₃); 2,24 (d. 2-H 7,0); 2,83 (d.d. 5-H ₄ ; 13,5; 11,3); 3,47 (d.d.6 -H ₄ ; 11,5;	1645, 1720, 3505	1720, 3505	1,63 (s, 3-CH ₃); 2,24 (d, 2-F 7,0); 2,83 (d.d, 5-H ₄ ; 13,5; 11,3); 3,47 (d.d,6-H ₄ ; 11,5)	14, 11,3); 2,52 (d.d,5-H _e ; 13,5; 3,5); 2,55 (d.d,H _a ; 14,0; 11,5); 3,16 (d.d.t, H _h , 14,0; 4,5; 2,0; 2,0); 3,27 (d, 2-H _e ; 3,5); 3,83 (s, OH); 5,05 5,16 (m, C=CH ₂); 5,66 5,86	245	18
III C ₁₅ H ₁₉ NO ₂ 011 1645, 1715 sh., 1.28 (s, 3-CH ₃); 2,37 (d, 2-1730, 3495 7,5); 3,04 (d.d, 5-H ₃ ; 14,5; 14	1645, 1715 sh., 1730, 3495		(m, CH=C); 7,237,40 (m, 1,28 (s, 3-CH ₃); 2,37 (d, 2-7,5); 3,04 (d,d,5-H ₃ ; 14,5; 2,0); 3,59 (d,d,6-H ₃ ; 10,5;	(m, CH=:C); 7,23 7,40 (m, 5H arcm.) 1,28 (\mathbf{s} ,3-CH ₃); 2,37 (\mathbf{d} , 2-H _a ; 12,0); 2,48 (\mathbf{d} . \mathbf{d} , 5-H _e ; 14,5; 4,0); 2,75 (\mathbf{d} . \mathbf{d} , \mathbf	245	80
IV C ₁₇ H ₁₉ NO ₂ 8081 1655,1765,1775 st. 1,68 (s,7a-CH ₃); 2,07 (d, 7 H _a ; 14,0; 7.5); 2,84 (d, d, 320 (d, d, 5-H _a ; 10,8; 3.55);	1655, 1765, 1775 sh.		5,84 (m, CH=C); 7,17 7,18 (s, 7a-CH ₃); 2,07 (d, 7h _a ; 14,0; 7,5); 2,84 (d.d, 3,20 (d.d, 5-H ₄ ; 10,8; 3,5);	37 (m, 5H arom.) -Ha; 10,8); 2,57 (d.d.d., 4-Ha; 13,5; 10,8; 1,8); 2,59 (d.d., 4-Ha; 13,5; 3,5); 3,13 (d.d.t., Ha; 14,0; 4,5; 2,0; 2,0); 3,43 (d. 7-Ha; 10,8); 5,035,12 (m, C=CH2); 5,625,85	269	65
V C ₁₇ H ₁₉ NO ₂ 6767,5 1650, 1770 (m. CH=C.); 5,08 (d. 3-H; 1 3.02 (s. 3-C-CH); 2,71 (d. 3.02 (s. 3.02 (d. 3.02 (d. 4. 3.	1650, 1770	1770	(m, $CH=C_1$); 5,08 (d, 3-H; 1,68 (s, $7a$ - CH_3); 2,71 (d, 3,02 (d,d, 4- H_6 ; 14,0; 1,5); 5,8; 1,6; 1,6); 4,29 (d,d,	35] f_1 20 f_1 40 m. d. (m. 511, 2470m.) 7-Ha; 11,0); 2,84 (d.d. Hz, 14,2; 7.0); 2,98 (d. 7-Hz, 11,0); 3.09 (d. d. 4-Ha, 14,0; 71; 1,8); 3.26 (d. d.t. Hz, 14,2; 5-Hz; 7,1; 1,5); 5,10 5,20 (m. C=CHz); 5,72 5,82 (m.	269	62
VI $C_{17}H_{19}NO_2$ 106 107 1655, 1768, 1780 sh, 1,27 (d, 7-CH ₃ ; 7,0); 1,61 (d.d.d.) 12-H ₃ ; 12,5; 10,5; 1 (d.d.d.d.) 12-H ₃ ; 12,5; 10,5; 1 (d.d.d.d.d.) 12-H ₃ ; 10,8; 13,33 (d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.	1655, 1768, 1780 sh ., 2765, 2805		CH=C); 5,81 (d, 3-H; 1,8' 1,27 (d, 7-CHs; 7,0); 1,61 ((d.d.d.12-Hs; 12,5; 10,5; 1 (d.4-Hs; 10,8); 3,33 (d.d.1	CH=C); 5,81 (d. 3-H; 1,8); 7,12 7,19 (m. 2H arom.); 7,24 7,38 (m. 3H arom.) 1,27 (d. 7-CH ₃ ; 7,0); 1,61 (s. 3a-CH ₃); 2,33 (d. 4-H ₄ ; 10,8); 2,35 (t. 6-H ₄ ; 11,5); 2,51 (d. d. d. 12-H ₄ ; 12,5; 10,5; 1,8); 2,98 (d. d. 6-H ₆ ; 11,5; 5,2); 3,20 3,28 (m. 7-H ₄); 3,29 (d. d. 4-H ₆ ; 10,8); 3,33 (d. d. d. 110-H ₄ ; 10,5; 3,0); 3,40 (d. d. d. 12-H ₇ ; 12,5; 3,0); 5,81 (d. 1-H;	1 269 9 :	63
VII C ₁₇ H ₁₉ NO ₂ [129130 [1658, 1770, 1780 sh. 1.20 (d. 7-Cl1 ₃ ; 6.3); 1,65 (s. 3d. (d. 4-H ₆ ; 10,5); 2,98 (d. d. d. 12-H ₆ ; 10,5); 2,98 (d. d. d. 12-H ₆ ; 11,5; 5,2); 3,46 (d. d. 12-H ₆ ; 11,5; 5,2); 3,46 (d. d. 12-H ₆ ; 11,8); 7,08 7,27 (m, 4H arom.)	1658, 1770, 1780 sh.		1,8); 7,16 7,41 (m, 4H ar. 1,20 (d, 7-CII ₃ ; 6.3); 1,65 (d, 4-H _c ; 10,5); 2,98 (d, d, 6-H _c ; 11,5; 5,2); 3,46 (d, d, 1,8); 7,08 7,27 (m, 4H ar.	4H arom., 165 (s, 3a-CH ₃); 257 (d, 4-H _a ; 10.5); 2.96 (t, 6-H _a ; 11.5); 2.97 (d.d.d, 12-H _a ; 13.5; 5.6; 1.8); 2.963,04 (m, 7-H _a); 3,17 (d.d.d, 12-H _a ; 13.5; 1.6); 4,49 (d.d, 116-H _a ; 5.6; 1.6); 5,61 (d, 1-H; 4H arom.)	7 269 ;	70

TABLE 2. Chemical Shifts in ¹³C NMR Spectra of Compounds VI and VII

					,	mdd '			:				·
C ₍₂₎	C _(3a)	C(4)	C ₍₆₎	c_{in}		C(7a)-C(11a)	101		C(11b)	C ₍₁₂₎	$C_{(12a)}$	3a-CH3	7-CH ₃
172,10	84,18	69,99	59,61	32,99	124,68: 126,03	1; 126,64;	126,87;	135,91;	64,29	34,07	173,41	22,20	17,82
172,03	84,27	58,80	58,32	26,56	123,00 124,88; 126,12 139,57	; 127,07;	127,69;	132,52;	58,58	28.64	170,54	22,18	16,91
e/ e/	10		84,18	84,18 66,69 84,27 58,80	84,18 66,69 59,61 32,99 84,27 58,80 58,32 26,56	84,18 66,69 59,61 32,99 121,68 139,68 139,68 84,27 58,80 58,32 26,56 124,88 139,57	84,18 66,69 59,61 32,99 121,68 139,68 139,68 84,27 58,80 58,32 26,56 124,88 139,57	84,18 66,69 59,61 32,99 121,68 139,68 139,68 84,27 58,80 58,32 26,56 124,88 139,57	84,18 66,69 59,61 32,99 84,27 58,80 58,32 26,56	84,18 66,69 59,61 32,99 121,68; 126,03; 126,64; 126,87; 135,91; 84,27 58,80 58,32 26,56 124,88; 126,12; 127,07; 127,69; 132,52;	84,18 66.69 59,61 32,99 121,68: 126,03; 126,64; 126,87; 135,91; 64.29 84,27 58,80 58,32 26,56 124,88; 126,12; 127,07; 127,69; 132,52; 58,58	84,18 66,69 59,61 32,99 121,68: 126,03; 126,64; 126,87; 135,91; 64,29 34,07 84,27 58,80 58,32 26,56 124,88; 126,12; 127,07; 127,69; 132,52; 58,58 28.64	84,18 66,69 59,61 32,99 121,68: 126,03; 126,64; 126,87; 135,91; 64,29 34,07 173,41 84,27 58,80 58,32 26,56 124,88; 126,12; 127,07; 127,69; 132,52; 58,58 28,64 170,54

The acute toxicity index (LD_{50}) on intravenous administration of the above salts was equal to 181.4 and 114.6 mg/kg, respectively, i.e., in accordance with the accepted classification these compounds can be classed as slightly toxic.

When administered to the mice in doses comprising 20% of LD_{50} these compounds manifest a distinct general neurotropic action: they suppress the orienting reaction; increase the survival time of test animals after the administration of strychnine and corazole; intensify the reserpine hypothermia; prolong the analgesic effect of morphine, although by themselves they do not alter the threshold of pain sensitivity to a temperature dependent irritant.

Thus, a preparative method has been developed for the synthesis of benzo[a]furo[2,3-g] quinolizines, which are of definite interest for the synthesis of new biologically active compounds.

EXPERIMENTAL

The IR spectra of solutions of the compounds in C_2Cl_4 were run on a UR-20 spectrophotometer. The PMR and ^{13}C NMR spectra were obtained in CDCl $_3$ on a Bruker WM-360 spectrometer, using HMDS as internal standard. The mass spectra were recorded on a Varian MAT-311 mass-spectrometer at 70 eV. The characteristics of compounds II-VII are given in Table 1. The data of the elemental analysis of the compounds obtained agree with the calculated values.

le-Allyl-3a-hydroxy-3a-methyl-6e-phenyl-4-piperidone (II). A 50.0 g portion (0.27 mole) of cinnamoyloxirane I was dissolved in 300 ml of dioxane, and 50 ml of water and 30 g (0.52 mole) of allylamine were successively added. The reaction mixture was allowed to stand for 24 h at 18...20°C, and then was evaporated. The residue was dissolved in 200 ml of 10% HCl, and the solution was allowed to stand overnight. The aqueous solution was then filtered and the filtrate was made alkaline with NaHCO $_3$. The precipitate that separated out was extracted with ether, the ether solution was dried over Na $_2$ SO $_4$, evaporated, and the residue was crystallized from pentane.

 $\frac{1\text{e-Allyl-3a-hydroxy-3e-methyl-6e-phenyl-4-piperidone (III)}{\text{of allylamine was added at }150...160^{\circ}\text{C} \text{ to a solution of }18\text{ g} \text{ (0.096 mole)} \text{ of cinnamoyloxirane} \text{I in }50\text{ ml of benzene.}$ The reaction mixture was allowed to stand at the above temperature for 2 h and was then treated as described in the preceding experiment.

6e-Allyl-8a-methyl-2-oxo-5-phenylfuro[2,3-c]piperidine (IV, V). A 28.6 g portion (0.12 mole) of isopropyl diethylphosphonoacetate was added to a solution of sodium isopropylate, prepared by dissolution of 2.53 g (0.11 mole) of sodium in 250 ml of isopropanol, and then while cooling the mixture with tap water, 21.9 g (0.1 mole) of piperidone II, III was added. The mixture was stirred to the complete dissolution of piperidone; it was then acidified with acetic acid, the solvent was evaporated, and the residue was dissolved in ether and washed with a saturated solution of NaHCO₃ and water. After evaporation of the solvent, the residue was dissolved in 100 ml of isopropanol, 16.4 g (0.20 mole) of sodium isopropylate was added, and the mixture was allowed to stand for 5 h at 20...25°C. The mixture was then acidified with acetic acid, the solvent was evaporated, and the residue was dissolved in ether. The ether solution was washed with a saturated solution of NaHCO₃ and water, dried over Na₂SO₄, evaporated and the residue was crystallized from isopropanol.

3a,4,6,7,11b,12-Hexahydro-3a,7-dimethyl-2-oxobenzo[a]furo[2,3-g]quinolizines (VI, VII). A mixture of 1 g (3.8 mmole) of lactone IV, V and 2 ml of 96% H_2SO_4 was allowed to stand for 2 h 30 min at 110...115°C. It was then diluted with water (30 ml), and allowed to stand for another hour at the same temperature. The solution was cooled, made alkaline with Na_2CO_3 , extracted with ether, and the extract was dried over Na_2SO_4 . The solvent was evaporated, and the residue was crystallized from isopropanol.

 $3a,4,6,7,11b(\alpha),12$ -Hexahydro- $3a(\beta),7(\alpha)$ -dimethyl-2-oxobenzo[a]-furo[2,3-g]quinolizine methanesulfonate (IV·CH₃SO₃H, C₁₇H₁₉NO₂·CH₄O₃S). A 1.06 g portion (11 mmoles) of methanesulfonic acid was added to a solution of 2.69 g (10 mmoles) of lactone IV in 10 ml of acetone. The precipitated salt was filtered and washed with cold acetone. Yield, 3.2 g (88%) of methanesulfonate, mp 193...194°C.

 $3a,4,6,7,11b(\beta),12$ -Hexahydro- $3a(\beta),7(\beta)$ -dimethyl-2-oxobenzo[a]-furo[2,3-g]quinolizine hydrochloride (V·HCl, $C_{17}H_{19}NO_2\cdot HCl$). Dry HCl was passed through a solution of 2.69 g (10 mmoles) of lactone V in 20 ml of ether to pH 4...5. The precipitated hydrochloride was recrystallized from isopropanol. Yield 2.8 g (91%) of the salt, mp 208-210°C.

LITERATURE CITED

- 1. P. Chinnasamy and M. Shamma, Can. J. Chem., <u>57</u>, 1647 (1979).
- 2. F. A. Lakhvich, L. G. Lis, and A. A. Akhrem, Usp. Khim., 53, 1014 (1984).
- 3. T. Naito, N. Kojima, O. Mijata, and I. Ninomija, J. Chem. Soc., Chem. Commun, 1611 (1985)
- 4. G. V. Pshenichnyi and L. S. Stanishevskii, VIth International Conference on Organic Synthesis, Summaries of Lectures [in Russian], Moscow (1986), p. 120.
- 5. L. S. Stanishevskii, I. G. Tishchenko, Yu. V. Glazkov, and A. Ya. Guzikov, Zh. Prikl. Khim., 19, 123 (1973).
- 6. L. S. Stanishevskii, I. G. Tishchenko, and A. M. Zvonok, Khim. Geterotsikl. Soedin., No. 5, 670 (1975).
- 7. Physical Methods in the Chemistry of Heterocyclic Compounds [in Russian], A. R. Katritskii (ed.), Khimiya, Moscow-Leningrad (1966), p. 494.
- 8. V. F. Bystrov, Usp. Khim., <u>41</u>, 531 (1972).
- 9. F. Bohlmann, Chem. Ber., 91, 2157 (1958).
- 10. M. Uskokovic, H. Bruderer, C. Von Planta, T. Williams, and A. Brossi, J. Am. Chem. Soc., 86, 3364 (1964).
- 11. G. W. Grible, R. B. Nelson, J. L. Johnson, and G. C. Levy, J. Org. Chem., <u>40</u>, 3720 (1975).